
J O U R N A L O F M A T E R I A L S S C I E N C E 3 8 (2 0 0 3 ) 107 – 112

Electrical conductivity studies of sodium

borate system based on diffusion controlled

relaxation model
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A.c. conductivity measurements and its analysis are performed on the xNa2O + (1 − x)B2O3

ionic conducting glass system, where 0.05 < x < 0.45. The a.c. conductivity data are
analysed using both Jonscher’s power law and diffusion controlled relaxation (DCR) model.
The DCR model is used to interpret the observed dispersion in a.c. conductivity in terms of
diffusion controlled dielectric loss relaxation mechanism. All the known experimental
features of the σ ′(ω) including scaling behavior are explained satisfactorily. The results
show an excellent agreement with scaling behavior based on loss peak frequency.
C© 2003 Kluwer Academic Publishers

1. Introduction
The electrical conduction study on fast ion conducting
glasses particularly play an important role and are often
the deciding factors about the suitability of the material
for a particular electrochemical device. The measured
a.c. conductivity consists of intrinsic conductivity of
materials along with electrode resistance and electrode
sample interface resistance. Therefore, extraction of in-
trinsic conductivity is essential for a material. One of
the most important characteristic properties of disor-
dered solids is the strong dispersion of the real part
of the a.c. conductivity [1–17]. At low frequencies one
observes a constant conductivity, while at high frequen-
cies, the conductivity becomes strongly frequency de-
pendent, varying approximately as a fractional power
of frequency. The increase in conductivity usually con-
tinues up to phonon’s frequencies. In the literature, sev-
eral theoretical models have been proposed to explain
the observed dispersive behavior in a.c. conductivity
[18–22]. In this context, the observed dispersive behav-
ior in a.c. conductivity is discussed mainly in terms of
dielectric loss relaxation processes or conductivity re-
laxation processes. In the present paper, we have studied
the a.c. conductivity dispersion and its scaling behavior
in xNa2O + (1 − x)B2O3 glassy system as a function of
compositions 0.05 < x < 0.45. The observed a.c. con-
ductivity dispersion is analysed with the dielectric loss
relaxation process associated in the diffusion controlled
relaxation model and Jonscher’s universal power law.

2. Experimental procedure
Sodium carbonate and boric acid were taken as the in-
gredients for the preparation of xNa2O + (1 − x)B2O3
ionic conducting glass system, where 0.05 < x < 0.45.
The raw materials were taken in open silica crucibles

∗Author to whom all correspondences should be addressed.

melted in a furnace for 30 to 45 min at about 800–900◦C
(depending upon the composition). During the melting
process, the crucible was shaken frequently to ensure
the homogeneous mixing of all substances. The melt
was poured between two stainless steel plates, which
was kept at room temperature. The resulting glass sam-
ples were brittle. These glasses were pulverised into
fine powder and pressed into pellets of 10 mm diameter
and about 1 mm thick by applying a pressure of 5000–
6000 kg/cm2 for about 15 min using a hand press. The
prepared samples of the xNa2O + (1 − x)B2O3 system
with x varying from 0.05 to 0.45 were subjected for
the X-ray diffraction (XRD) studies. The peak less
XRD patterns confirmed that the samples were amor-
phous in nature. In order to ascertain their glassy na-
ture, they have been subjected to DSC studies. A.c.
electrical measurements were carried out by sandwich-
ing the pellets between electrical leads made of silver.
Zentech 3305 component analyser (TAIWAN) was
used to measure the capacitance Cp and conductance
Gp in the frequency range 20 Hz to 1 MHz at different
temperatures. Analysis was made by using impedance
spectroscopy technique to extract the information about
the bulk properties of the sample. Complex impedance
analysis was carried out for the samples at different tem-
peratures from the measured Gp and Cp values through
the admittance Y ∗ of the sample:

Y ∗ = Gp + jω Cp = 1/Z∗. (1)

Fig. 1 shows the impedance dispersion for the sam-
ple 0.4Na2O + 0.6B2O3 at 396 K. The impedance plot
shows combined arcs of two different semi-circles.
From the plot, one can see that the electrode sample in-
terface dispersion is more pronounced at low freqency
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T ABL E I The magnitude of Cole-Cole exponent α, the mean relaxation time τm, room temperature d.c. conductivity and τ/τ1 for the
xNa2O + (1 − x)B2O3 glass system

Composition x σdc (300 K) (S m−1) α τm (sec) n τ/τ1

0.05 1.352 × 10−8 0.0642 1.613 × 10−3 0.9122 1.059
0.10 5.121 × 10−7 0.0438 6.377 × 10−3 0.9288 1.098
0.15 6.464 × 10−9 0.0209 5.138 × 10−3 0.9685 1.194
0.20 1.954 × 10−8 0.0514 4.849 × 10−3 0.9877 1.242
0.25 5.205 × 10−9 0.0574 1.424 × 10−3 0.9334 1.109
0.30 3.045 × 10−8 0.0105 9.409 × 10−5 0.8524 0.924
0.35 9.824 × 10−9 0.0031 1.725 × 10−3 0.9156 1.067
0.40 1.673 × 10−8 0.0281 1.272 × 10−3 0.9350 1.113
0.45 1.399 × 10−7 0.0752 1.774 × 10−4 0.9248 1.089

Figure 1 Impedance spectrum of the sample 0.4Na2O + 0.6B2O3 at
396 K.

region, and in high frequency region the depressed
semi-circle may be due to the dispersive behavior of
the sample bulk resistance and the corresponding Cole-
Cole type constant phase element (CPE), Qo( jω)−(1−α)

[23, 24]. The frequency dispersion based on the final
parameter set is compared with the total measured dis-
persion in the fit quality plot using dispersion simu-
lation program [25]. Similar procedure is followed to
analyze the various compositions of the compounds at
different temperatures. From Fig. 1, the high frequency
depressed semi-circle do not pass through origin, be-
cause it satisfies the condition Z∞ > 0. The depressed
semi-circle below the real axis indicates that the relax-
ation time τ is not single valued, but it is distributed
continuously or discretely around the mean relaxation
time τm. The width of the distribution of relaxation time
is related to the angle through which the semi-circle is
depressed below the real axis or through the CPE expo-
nent α. The magnitude of the constant phase element
exponent α of the high frequency region for all the sam-
ples at room temperature is shown in Table I along with
the mean relaxation time τm.

The bulk d.c. resistances at different temperature for
all the compositions are obtained from the analysis of
impedance plane plots. The d.c. electrical conductivity
of the sample is given by:

σdc = d

Ra
S m−1, (2)

where d is the thickness of the pellet in metre; a is
the area of cross section in m2 and R is the bulk resis-
tance in ohms obtained from impedance plot. The val-
ues of room temperature d.c. conductivity are reported
in Table I. The temperature dependence of d.c. con-
ductivity in the form of log (σdcT ) versus 1000/T was

Figure 2 (a) log[σdcT ] versus 1000/T of the prepared glass samples
under investigation. (b) log[σdcT ] versus 1000/T of the prepared glass
samples under investigation.

plotted for all the compositions and results are shown
in Fig. 2a and b. It is found that the d.c. conductivity
increases with increasing temperature and obeys the
Arrhenius equation

σdcT = σoe−Edc/kBT . (3)

The d.c. activation energy for the conduction is calcu-
lated from the slope of the log (σdcT ) versus 1000/T
for various compositions of the samples. Fig. 3 shows
the variation of d.c. activation energy with different
compositions of the prepared samples. The d.c. activa-
tion energy variation is found to be non-linear as the
composition changes.

The measured conductance Gp( f ) values were used
to study the a.c. conductivity behavior of the prepared
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Figure 3 Variation of d.c. activation energy (Edc) as a function of Na2O
content.

Figure 4 log[σ ′(ω)/σdc] as a function of log[frequency] of the inves-
tigated samples at room temperature before suppressing the electrode-
sample interface contribution.

samples. The a.c. conductivity exhibits dispersive be-
havior as a function of frequency f . Fig. 4 shows the
a.c. conductivity behavior of the prepared samples
scaled by the respective bulk d.c. conductivity at room
temperature. The dispersion in low frequency region
(upto 1 kHz) is due to the polarisation of the electrode
sample interface effect. With equivalent circuit anal-
ysis, the dispersion due to electrode-sample interface
effect is suppressed and the real part of the conductiv-
ity is calculated for further analysis, which is dealt in
the Section 4. The knowledge of conductivity behavior
is therefore often used to infer information concerning
about dynamic behavior of ions in the materials. Even
then, a proper understanding of the a.c. conduction is
important in order to arrive at a correct picture of d.c.
transport. The simplest and indeed the most common
explanation for increase of conductivity with frequen-
cies is the existence of one or other kind of inhomogen-
ties present in the solid. The inhomogeneties may be
of a microscopic or a macroscopic nature, a question,
which is not yet settled. In the next section, a review on
models of a.c. conduction with brief discussion on the
diffusion controlled relaxation model for ionic trans-
port in fast ionic conductors will be presented.

3. Models in disordered ionic
conductors-DCR model

Measurement of impedance or conductivity alone are
usually not enough, however, much more can be learned
when the measured data are interpreted using appro-

priate models and its corresponding equations. Present
section is the discussion on Jonscher’s empirical equa-
tions [18, 19, 26], which have proved useful for a.c.
conductivity data analysis and a plausible physically
realistic model, namely diffusion controlled relaxation
model [27–30].

In many non-metallic ionic conductors d.c. or a.c.
electrical conductivity is the result of diffusion of
ions through the ionic conductors. Almond and oth-
ers [31–33] pointed out, that the dispersive behavior
of a.c. conductivity of disordered solids, which have
ionic conducting nature can be expressed in the form
[18, 19];

σ ′(ω) = σ (o) + Aωn, o < n < 1. (4)

It should be note that the total measured a.c. conduc-
tivity in the additive form characterised by Equation 4
actually implies that the a.c. and d.c. conductivities are
independent and that they arise from different mech-
anisms. On the other hand, the d.c. conductivity is
the zero frequency limit of the a.c. conductivity, i.e.,
σ (o) = σ ′(ω → o), means that only a single mechanism
is involved in the conductive response. As a common
feature, it has been postulated that the observed dy-
namic conductivity dispersion is also due to the polar-
isation loss mechanism by ions diffusion through the
solid. In general, both conductivity and dipolar relax-
ation process may be present in the same material, then
the total conductivity is given by,

σ ∗(ω) = σ (o) + jωεoε
∗(ω), (5)

where σ (o) is the long range or frequency independent
or d.c. conductivity; εo is the permittivity of the free
space and ε∗(ω) is the complex dielectric constant de-
fined by ε∗(ω) = ε′(ω) − jε′′(ω), where ε′ω and ε′′(ω)
are the real and imaginary parts of the complex dielec-
tric constant. Therefore, the real part of the a.c. con-
ductivity is given by

σ ′(ω) = σ (o) + ωεoε
′′(ω). (6)

Jonscher has stated that ε′′(ω) is proportional to the
combination of two terms with respect to dielectric loss
peak frequency and it is given by

ε′′(ω) ∝ [
(ω/ωp)−m + (ω/ωp)(1−n)]−1

, (7)

where the first term corresponds to ω < ωp and the sec-
ond term corresponds to ω > ωp. The exponents m and
n are arbitrary parameters and both are smaller than
unity. The Jonscher’s universal power law Equation 4
is obtained from Equation 7 by means of identification
of m = −1 [31–33]. Thus the a.c. conductivity becomes

σ ′(ω) = Kωp + Kω(1−n)
p ωn (8)

where K is constant and contains the information about
the carrier concentration, ion hopping distance, etc.
Comparing Equation 8 and Equation 4, one finds that
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σ (o) = Kωp and A = σ (o)/ωn
p . The first term is the fre-

quency independent d.c. conductivity and the second
term is the dispersive component of conductivity in a
characteristic power law with exponent n.

There are two basic types of theory that have been
used to describe the observed dispersive behavior of
electrical properties in disordered ionic conductors. In
the first, the high frequency power law is assumed to
represent the high frequency part of a relaxation process
whose low frequency part is covered by d.c. conductiv-
ity. This relaxation process is assumed to be result from
hopping of ions over local energy barriers at high fre-
quencies. The second view interprets that the frequency
dependence of the conductivity is the result of changes
in the diffusion of mobile ion. At low frequencies, the
mean square displacement of diffusing ions is linear
in time which results a constant coefficient of diffusion
and hence d.c. conductivity. At high frequencies the ion
is influenced by the interactions with nearest neighbor-
ing ions, exhibits a dispersive behavior in mean square
displaced and hence the dispersive conductivity.

In the literature, the a.c. conductivity in disordered
solids assumes that a broad frequency response from re-
laxation of a number of sites, acting independently with
a distribution of relaxation times. However, in contrast
with the distribution of the relaxation times, there is
an alternative picture in which the electrically relaxing
centres are strongly coupled with each other and with
the result of the relaxation process occurs in series, each
site constraining the relaxation of the others through the
stretched exponential relaxation function [34, 35].

φ(t) = e−(t/τ )βww

. (9)

It is clear from Equation 9, that the time dependent
relaxation of the dielectric polarisation after the appli-
cation of an electric field is not simple exponential.

The DCR model appears to be the simplest avail-
able model, which can satisfactorily account for a
wide variety of experimental data with the minimum
assumptions. The relaxation process in the absence of
interaction by other ions are described through Debye
relaxation process for the diffusing ions and it is given
by

φ(t) = e−(t/τ ), (10)

where τ is the relaxation time. The complex permittivity
ε∗(ω) or the complex susceptibility χ∗(ω) = ε∗(ω) − 1
is obtained by taking imaginary Laplace transform of
the derivative of the relaxation function,

L

[
− dφ

dt

]
= L

[
1

τ
e−t/τ

]
= ε∗(ω) − ε∞

εs − ε∞
, (11)

where εs and ε∞ are the static or d.c. and high fre-
quency limits of the permittivity and L[ ] is the imagi-
nary Laplace transform operator. By using Equation 6,
the real part of the conductivity is given by

σ ′(ω) = σ (o) + εo(εs − ε∞)ω2τ

1 + ω2τ 2
. (12)

In the high frequency region i.e., ωτ  1, the real part of
the conductivity is independent of frequency. However,
the literature shows that the real part of the conductivity
obeys power law frequency dependence at sufficiently
high frequencies. The exponent n in the power law fre-
quency dependence is increasing with decreasing tem-
perature. Further, the peak in dielectric loss, which is
often asymmetric and much broader than that expected
for a Debye loss peak.

The DCR model is proposed to explain the micro-
scopic transport mechanism of ion conducting glasses.
The DCR model is applicable in the presence of non-
bridging oxygen (NBO) sites in the ionic material.
Ion transport occurs by means of diffusive motion be-
tween the cation interstitial sites consisting of many
equivalents position around each NBO site. In DCR
model, the dielectric polarisation occurs principally by
means of an interstitialy like mechanism, in which an
ion diffuse to a site and cause the ion already resid-
ing at the site to move to another equilibrium posi-
tion via mutual Coulomb repulsion. The time scale in
this case is stretched by the diffusion time between
two sites. Therefore, the temporal response function is
defined as:

φ(t) = e−(t/τ )(1 − P(t)). (13)

The first term is the diffusion independent relaxation in-
volving the relaxation time τ . The second term involves
the instantaneous relaxation caused by the arrival of a
second ion to form an interstitialy pair. Diffusion in-
dependent relaxation can occur at a given site by the
thermally activated motion. This is the origin of the exp
(−t/τ ) term in Equation 13, where P(t) is the time de-
pendent probability of trigger ion which has reached
the new site from original site by the time t . The factor
(1 − P(t)) is the probability that such an ion has not yet
arrived and it is defined as for one dimension:

1 − P(t) = e− 2(Dt/π )1/2

lo , (14)

where D is the diffusion constant of the defect and 1/2 lo
is the average number of triggering ions or defects per
unit length. On substituting Equation 14 in Equation 13,

φ(t) = e−(t/τ )e−(t/τ1)1/2

, (15)

where τ1 = πl2
o/4D and when τ1 → ∞ then the relax-

ation process is a Debye type. If τ/τ1 > 1 and τ/τ1 < 1
the relaxation process is of Cole-Cole type [23] and
Cole Davidson type [36] respectively. The dielectric
permittivity of DCR model is obtained by using Equa-
tion 15 with Equation 11. In this case, the diffusion
triggered relaxation and diffusion independent relax-
ation together are responsible for frequency dependent
behavior of σ ′(ω). Thus, in DCR model, one can dis-
tinguish two types of ionic motion, which give rise to
qualitatively different behavior. At first, a steady diffu-
sive motion of ions occur through the material under
the action of an applied electric field, accompanied by
a polarisation relaxation at each intervening NBO site
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involved. Thus, this mechanism gives rise to a combi-
nation of a.c. and d.c. conductivities.

By Equations 6, 11 and 15, one can observe that the
dispersion in σ ′(ω) through the diffusion independent
relaxation τ and diffusion triggered relaxation τ1. In
the next section, the observed results of σ ′(ω) are anal-
ysed using both Jonscher’s UPL through the frequency
exponent n and DCR model through τ/τ1 ratio.

4. Results and discussion
4.1. A.C. conductivity analysis
The measurement of small signal a.c. frequency re-
sponse of ionic conducting materials over a wide range
of frequencies, i.e., impedance spectroscopy, is becom-
ing a valuable tool with the advent of automatic com-
ponent analysing equipment. The starting point in the
conductivity data analysis is the conversion of exper-
imentally measured impedance into admittance with
proper suppression of electrode resistance, electrode-
sample interface resistance and electrode sample inter-
face constant phase element.

The complex plane plots of the prepared samples at
different temperatures have broad asymmetric arcs sim-
ilar to Fig. 1. In the present work, the equivalent circuit
representation is used to analyse the bulk property of
the sample and interface responses. The electrode sam-
ple interface resistance and interface CPE responses
are suppressed in the impedance representation at all
frequencies. The sample a.c. response alone is identi-
fied for further studies. The sample response, the real
part of a.c. conductivity scaled by d.c. conductivity as
a function of frequency is shown in Fig. 5 for different
compositions at room temperature.

The conductivity spectra show a constant conduc-
tivity at low frequencies while at high frequencies,
the conductivity becomes strongly frequency depen-
dent, varying approximately power of the frequency.
Frequency exponent n in Equation 4 is calculated us-
ing non-linear least square fit procedure of Levenberg-
Marquardt [37]. In Fig. 5, the values of n are shown
between two brackets. The n values are less than unity
and have the same variation of the constant phase ele-
ment exponent (1 − α) of the sample contribution.

Figure 5 log[σ ′(ω)/σdc] as a function of log[frequency] of the inves-
tigated samples at room temperature after suppressing the electrode-
sample interface contribution.

The principal result of DCR model is, that the disper-
sion in σ ′(ω) or ε′′(ω) is dealt through τ and τ1 with the
assumption that, the dielectric loss relaxation process
is the same as that of Jonscher’s dielectric loss ε′′(ω).
It is possible to write the exponent n as [27–30]

n = [πτ/4τ1]1/2. (16)

Using fitted values of n from Equation 4, the values
of τ/τ1 are calculated using Equation 16. In Table I,
the values of τ/τ1 are reported as a function of com-
position at room temperature. It is observed that the
magnitude of τ/τ1 greater than one except for the sam-
ple x = 0.3. According to DCR model, τ/τ1 > 1, cor-
responds to Cole-Cole type dispersion. The dispersion
in σ ′(ω) through DCR model and Jonscher’s universal
law analysis shows that the origin of dispersion is CPE
present in the sample and it is of Cole-Cole type.

4.2. Scaling behavior in a.c. conductivity
The scaling and universality features are seen promi-
nently by the ion relaxation mechanisms in disordered
solids. Recently, there has been renewed interest in the
scaling and the striking similarity of a.c. conduction in
quite different solids [1, 3, 7, 38, 39]. It is usually pos-
sible to scale the temperature and composition depen-
dence of conductivity spectra into a single master curve.
In the literature, the scaling behavior in a.c. conduc-
tivity is studied using either with loss peak frequency
or with ωc which is characteristic, but arbitrary deter-
mined frequency. Sidebottom in his recent work [5],
suggested a universal approach for scaling the a.c. con-
ductivity by defining, the dielectric loss strength. Some
disordered solids do not posses well defined dielectric
loss peaks, and as a consequence the value of the static
dielectric constant or dielectric loss strength could not
be obtained from the frequency dispersion dielectric
data. Under these circumstances, the frequency axis is
scaled with respect to hopping frequency which auto-
matically taken into account the dielectric loss strength
and correlation effects during diffusion of ions in dis-
ordered lattice [7]. Therefore, we use Jonscher’s loss
peak frequency as scaling frequency for the frequency
axis.

The loss peak frequency is calculated using Equa-
tion 4 with A = σ (o)/ωn

p defined by Almond and West
[27–29]. Then the Equation 4 becomes,

σ (ω) = σ (o) + σ (o)ωn/ωn
p (17)

By using fitted values of A, n and d.c. conductivity,
the value of ωp is calculated. The variation of ωp as a
function of composition at room temperature is shown
in Fig. 6. The real part of a.c. conductivity for different
compositions at room temperature are scaled by the
respective d.c. conductivity and plotted as a function
of ω/ωp and are shown in Fig. 7. From this figure, it
is evident that all the dispersive curves collapse on a
single master curve. Therefore, the frequency scaling
by ωp on the frequency axis shows universal dispersive
behavior of a.c. conductivity.

111



Figure 6 Composition dependence of loss peak frequency ωp at room
temperature of the investigated samples.

Figure 7 σ ′(ω)/σdc as function of ω/ωp of the investigated samples at
room temperature.

5. Conclusion
In the present work, the electrical properties of var-
ious composition of sodium borate glasses at differ-
ent temperatures are studied. The measured a.c. data
are analysed using the diffusion controlled relaxation
mechanism and Jonscher universal power law to ex-
plain the observed dispersive behavior of the electri-
cal conductivity. Using impedance spectroscopy tech-
nique, the data are analysed based on Cole-Cole type
impedance response function. The values of frequency
exponent n of Jonscher’s universal power law of a.c.
conductivity as a function of the samples composition
at room temperature are calculated. The DCR model
is used to explain the observed dispersive behavior of
a.c. conductivity through the diffusion triggered relax-
ation and diffusion-independent relaxation times. The
scaling behavior in a.c. conductivity is satisfactorily
explained by scaling the frequency axis by loss peak
frequency.
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